1. Let on S_8 permutations

\[
A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}, \\
B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}, \\
C = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 2 & 5 & 8 & 6 \end{pmatrix}
\]

a) Write A, B and C as a product of disjoint cycles.
b) Write A, B and C as a product of transpositions.

2. Express on S_8 the permutation

\[
\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 8 & 5 & 6 & 4 & 7 & 1 \end{pmatrix}
\]

a) Write as a product of disjoint cycles.
b) Find the order of σ.
c) Write as a product of transpositions.
d) Is σ even or odd permutation.
e) Show that the inverse of the permutation σ.

3. Express on S_6 the following permutations as

\[
A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 4 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 6 & 4 & 5 \end{pmatrix}
\]

a) Write as a product of disjoint cycles.
b) Find the order of A and B.
c) Write as a product of transpositions for A and B.
d) Are A and B even or odd permutation.
e) Show that the inverse of the permutation σ.
f) $AB = ?$, $BA = ?$ and $AB \neq BA$.
g) $o(AB) = ?$ and $o(BA) = ?$
h) Find the inverse of AB.

4. Find the order

a) $(123) \circ (45)$ in S_5.
b) $(1234) \circ (56)$ in S_6.
c) $(1234) \circ (567)$ in S_7.

1
5. a) Let \(\alpha = (13) \circ (58) \) and \(B = (2367) \in S_8 \). Find \(\alpha \circ \beta \circ \alpha^{-1} \) and order of \(\alpha \circ \beta \circ \alpha^{-1} \).

 b) Let \(\alpha = (259) \circ (136) \) and \(B = (157) \circ (2469) \) on \(S_8 \). Find \(\alpha \circ \beta \circ \alpha^{-1} \) and order of \(\alpha \circ \beta \circ \alpha^{-1} \).

6. Let permutation \(\pi = (cebir) \circ (burc) \circ (birey) \) in \(S_{29} \).

 a) Write \(\pi \) as a product of disjoint cycles.
 b) Find the order of \(\pi \).
 c) Write \(\pi \) as a product of transpositions
 d) Is \(\pi \) even or odd permutation
 e) Show that the inverse of the permutation \(\pi \).

7. Let permutation \(S_4 \)

 a) Write all elements of \(S_4 \)
 b) \(o (S_4) = ? \)
 c) Determine \(A_4 \)
 d) \(o (A_4) = ? \)
 e) Write all elements of \(A_4 \) as a product of 3-cycles.
 f) Show that \(A_4 \leq S_4 \)
 g) Find the center of \(A_4 \). \([C(A_4) = ?] \)

8. Let \(GL(2, \mathbb{R}) \) denote the group all nonsingular \(2 \times 2 \) matrices over \(\mathbb{R} \).

 Show that each of the following sets is a subgroup of \(GL(2, \mathbb{R}) \)

 a) \(S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad - bc = 1 \right\} \)

 b) \(S = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \neq 0 \right\} \)

9. Let \(G \) be a group and define as follows \(M_a = \{ g \mid ga = ag, \ g \in G \} \)

 a) Show that the set \(M_a \) is a subgroup of \(G \).
 b) If \(G = Q_8 = \{ \pm 1, \pm i, \pm j, \pm k \mid i^2 = j^2 = k^2 = ijk = -1 \} \) and \(a = k \),

 write the elements of subgroup \(M_k \).
 c) If \(G = Q_8 \) and \(a = -1 \), write the elements of subgroup \(M_{-1} \).

10. a) Find the subgroups of \(\mathbb{Z} \).
 b) Find the subgroups of Klein 4-group.
 c) Find the subgroups of \(Q_8 \).