1. Express on S_7 the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 4 & 6 & 7 & 3 \end{pmatrix}$$

a) Write as a product of disjoint cycles.
b) Find the order of σ.
c) Write as a product of transpositions
d) Is σ even or odd permutation
e) Show that the inverse of the permutation σ.

2. Express on S_6 the following permutations as

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 1 & 6 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 5 & 4 & 6 \end{pmatrix}$$

a) Write as a product of disjoint cycles.
b) Find the order of A and B.
c) Write as a product of transpositions for A and B.
d) Are A and B even or odd permutation
e) Show that the inverse of the permutation σ.
f) $AB = ?$, $BA = ?$ and $AB \neq BA$.
g) $o(AB) = ?$ and $o(BA) = ?$
h) Find the inverse of AB.

3. a) Let $\alpha = (1257)$ and $B = (246) \in S_7$. Find $\alpha \circ \beta \circ \alpha^{-1}$ and order of $\alpha \circ \beta \circ \alpha^{-1}$.

b) Let $\alpha = (1357)$ and $B = (248) \circ (136)$ on S_8. Find $\alpha \circ \beta \circ \alpha^{-1}$ and order of $\alpha \circ \beta \circ \alpha^{-1}$.

4. Find the conjugate class of $\beta = (123)$ in S_3 and show that two cycles in S_3 conjugate iff they have the same length.

5. Let G be the group of 2×2 matrices under the addition and

$$H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a + d = 0 \right\}$$. Prove that H is a subgroup of G.

1
6. Let G be the group of all non-zero complex numbers $a+bi$ (a, b real, but not both zero) under multiplication, and let

$$H = \{a + bi \in G \mid a^2 + b^2 = 1\}$$

Verify that H is a subgroup of G.

7. a) Prove that the intersection of two subgroups of a group G is also a subgroup of G.

b) $2\mathbb{Z} \cap 3\mathbb{Z} \subseteq \mathbb{Z}$