22.10.2013 Algebra 1 Homework 4

1. Find the number of generators of a given cyclic group. [By using the Euler-function]
 a) \mathbb{Z}_{200} b) \mathbb{Z}_{4900} c) \mathbb{Z}_{1001}

2. a) Find the number of generators of cyclic group \mathbb{Z}_{18} and determine all
generators of \mathbb{Z}_{18}.
 b) Find all subgroups of cyclic group \mathbb{Z}_{36} and give their subgroup dia-
gram.

3. Find the order and determine all the elements in the indicated cyclic
group;
 a) The cyclic subgroup of \mathbb{Z}_{54} generated by 30
 b) The cyclic subgroup of \mathbb{Z}_{30} generated by 18

4. Let G is a cyclic group with its order 24
 a) Find the number of generator of G
 b) Find the number of subgroups of G
 c) Find the subgroup of G generated by 16
 d) Draw their subgroup diagram

5. Let (\mathbb{Z}_{18}, \cdot) multiplicative group
 a) Find the order of this group.
 b) Show whether this group is cyclic?

6. a) Show that $\mathbb{Z}_2 \times \mathbb{Z}_8$ is not a cyclic group.
 b) Show that $\mathbb{Z}_2 \times \mathbb{Z}_{21}$ is not a cyclic group.

7. Let G be must be an abelian group of order mn where $(m,n) = 1$. Assume
 that G contains an element a of order m and element b of order n. Prove that
 G is cyclic group with generator ab.

8. Prove that a group of order 3 must be cyclic.

9. a) Find a subgroup of S_5 that is a cyclic group of order 6.
 b) Prove or disprove if every subgroup of a group G is cyclic, then G is a
 cyclic group.

10. Prove that $H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \mid n \in \mathbb{Z} \right\}$ is a cyclic subgroup of $GL(2, \mathbb{R})$.