MİKRO İKTİSAT PS-II

SORULAR

1. Tüketicinin fayda fonksiyonu quasi-linear olsun;

\[U(x, y) = 2\sqrt{x} + y \]

i. Her iki malda da “Çok, iyidir” “more is better” varsayımı sağlanır mı?
ii. X malının marjinal faydası artan, azalan veya sabit midir?
iii. MRSx,y değeri artan, azalan veya sabit midir?
iv. Bu fayda fonksiyonunun grafiğini çiziniz.
v. Eğer fonksiyon, \[U(x,y)=3x + y \] şeklinde olsaydı MRSx,y yi nasıl yorumlardınız?

2. Bir tüketicinin fayda fonksiyonunun \[U(x_1,x_2) = x_1^4x_2^3 \] olduğunu düşünelim. Faydasını maksimize etmek isteyen bu tüketici;

i. Gelirinin ne kadarını ikinci mala harcamalıdır?
ii. Birinc. malın fiyatı 32 ise ve tüketici ikinci maldan 4 birim alımısa, ikinci malın fiyatı ne olmalıdır?

3. Emre’nin fayda fonksiyonu \[U(x,y) = \min(x,5y + z) \] şeklindedir. Bu malların fiyatları sırasıyla TL cinsinden Px=1, Py=10 ve Pz=3 tür. Ayrıca geliri 27 TL dir. Bu değerlerle göre Emre’nin faydasını maksimize eden mal sepetini bulunuz.

4. Hakki’nin tercihleri \[U(q_1,q_2) = q_1q_2 \] fayda fonksiyonu ile karakterize edilmişdir ve 100 TL lik varlığa sahiptir. q1 ve q2 nin birim fiyatları sırasıyla 5TL ve 4TL dir.

i. Devletin birim başına q2 üzerine 1TL lik satış vergisi uyguladığını düşünelim. Bu durumda Hakki’nin optimal mal sepeti nasıl olmalıdır? Devlet bu vergi uygulaması ile ne kadar gelir elde etmiştir?
ii. Devlet sadece q2 üzerine vergi uygulamak yerine doğrudan Hakki’nin geliri üzerine 10TL lik bir götürü vergi uygulamıştır. Birim başına vergi ile elde edilen mal sepeti Hakki için halen elde edilebilir midir? Aynı mal sepetini seçecek,midir? Son duruma göre Hakki’nin optimal mal sepeti nasıl olmalıdır?
iii. Hangi vergi türlü Hakki için daha iyidir? Aynı grafik üzerinde gösteriniz.
1. \[U(x, y) = 2\sqrt{x} + y \]

v.) Bu varsayımın sağlanabilmesi için her iki malın tüketimsiz toplam faydalarının artması ve marginal faydaların pozitif olması gereklidir.

\[x \uparrow \Rightarrow U(x, y) \uparrow \]
\[y \uparrow \Rightarrow U(x, y) \uparrow \]

\[MU_x = \frac{1}{\sqrt{x}} > 0 \]
\[MU_y = 1 > 0 \]

\[v.ii \) \quad MU_x = \frac{1}{\sqrt{x}} \text{ azalıyor.} \]
\[x \text{ arttılsa } MU_x \text{ azalır.} \]

\[v.iii \) \quad MRS_{x,y} = \frac{MU_x}{MU_y} = \frac{1}{\sqrt{x} \cdot 1} = \frac{1}{\sqrt{x}} \]

\[MRS_{x,y} \text{ azalıyor.} \]
\[\Rightarrow x \text{ mal tüketimsiz arttılsa, y malından vazgeçerler miktara azalar calışır.} \]
\[u(x, y) = 2\sqrt{x} + y \]

\(y \) mali akısdan fayda fonksiyonu lineerdir. Ancak \(x \) mali istin fayda fonksiyonu lineer değişdir.

\[\text{v)} \quad \text{MRS}_{x,y} = \frac{MU_x}{MU_y} = \frac{3}{1} = 3 \]

Bunun anlamsı, elde edilen toplam fayda dürtürt sabitler, \(y \) valinden 1 birim fayla tüketebilmek için \(x \) malının 3 biriminden vazgeçilmeliidir.
2) \[U(x_1, x_2) = x_1^4 x_2^3 \]

2) \[MRS = -\frac{p_1}{p_2} \Rightarrow MRS = \frac{U_1(x_1, x_2)}{U_2(x_1, x_2)} = \frac{p_1}{p_2} \]

\[\frac{4x_1^3x_2^3}{3x_1^4x_2^2} = \frac{p_1}{p_2} \Rightarrow x_1 = \frac{4p_2}{3p_1} x_2 \]

Böyle biristency uyguladığımızda:

\[p_1 \cdot \frac{4p_2}{3p_1} x_2 + p_2 x_2 = I \Rightarrow \frac{7}{3} p_2 x_2 = I \Rightarrow \left[p_2 x_2 = \frac{3}{7} I \right] \]

\[\text{// Cobb-Douglas fonksiyonu} \]

\[U(x_1, x_2) = x_1^a x_2^b \Rightarrow \frac{x_2}{x_1} = \frac{b}{a+b} I \text{ ekrar. Çemp uyguna.} \]

\[x_1 = \frac{a}{a+b} I \text{ ekrar.} \]

\[\text{Vd.) } p_1 = 32, x_2 = 4 \text{ ve } I = 112 \Rightarrow p_2 = ? \]

\[p_2 x_2 = \frac{3}{7} I \Rightarrow p_2 \cdot 4 = \frac{3}{7} \cdot 112 \Rightarrow \left[p_2 = 12 \text{ TL} \right] \]

3) \[U(x, y) = \min (x, 5y + 7) ; p_x = 1, p_y = 40, p_z = 3, I = 27 \]

\[\text{max (} \min (x, 5y+7)) \]

\[\text{st. } x + 50y + 3z = 27 \]

\[\Rightarrow (5y + 7) ^{'}: \text{ inecelebilirizde; } \]

\[y \text{ ve } t \text{ tam sayıya değer} \]

* If \(MRS < \frac{p_y}{p_t} \) \(\Rightarrow y = 0 \).
* If \(MRS > \frac{p_y}{p_t} \) \(\Rightarrow t = 0 \).

\[\text{// min. fonk inecelebilir ise inecelebilir forwargı } \]

\[\text{sade Hale genelde işe girer. Bu yıldız ilk örnek üstelde 650m inecektir.} \]
\[U = \min (x, 5y) \]

// x ve y tan tanımlayız.

\[[x = 5y] \Rightarrow x + 10y = 27 \]

\[[y = 9/5, x = 9] \]

Bu nereden geldi??

Leontieff tipi fon. ola "U(x,y) = \min (Ax, By)" MRS'e bakalım!!! Sonuç, \(\min \) olan değer beşinledip! işin değişiklerde değişiklerin oluştuğuna.

\[U(q_1, q_2) = q_1 \cdot q_2 \quad I = 100, \quad P_1 = 5 \text{ TL}, \quad P_2 = 4 \text{ TL} \]

i) \(\frac{P_1}{P_2} = q_2 + t \Rightarrow q_2 = \frac{5}{4} \quad // \text{ Sadetsi vergili sonrası} \quad \text{After sales tax} \)

\[\text{MRS} = \frac{P_1}{P_2} = \frac{q_2}{q_1} = \frac{5}{4} = 1 \Rightarrow q_1 = q_2 \]

\[P_1 \cdot q_1 + P_2 \cdot q_2 = 100 \Rightarrow 5q_1 + 4q_2 = 100 \quad \left[q_1 = 9, q_2 = 10 \right] \]

Deuletin vergi lezamini; \(q_2 \cdot t = 40 \cdot 1 = 10 \)

ii) Götürs vergili sonrası // After lump-sum tax of 30 TL

\[I = 100 - 10 = 90 \text{ TL} \quad \frac{P_1}{P_2} = 5, \quad P_2 = 4, \quad I = 90 \]

\[P_1 \cdot q_1 + P_2 \cdot q_2 = 5\cdot 9 + 4\cdot 10 = 90 \quad // \text{ heren öde edilebilir} \]

Bu fakat Halkın aynı mal sepetini sesmeyecekler! (MRS değişti)

\[\text{MRS} = \frac{P_1}{P_2} = \frac{q_2}{q_1} = \frac{5}{4} = q_1 \]

\[P_1 \cdot q_1 + P_2 \cdot q_2 = 5q_1 + 4 \cdot \frac{5}{4} q_1 = 90 \Rightarrow \left[q_1 = 9, q_2 = 11.25 \right] \]

\[q_2 = \frac{5}{4} \cdot 9 = 11.25 \Rightarrow \left(q_2 = \frac{45}{4} \right) \]
iii) satış vergisi altında:

\[U(10, 10) = 10 \times 10 = 100 \]

Götsür vergisi altında:

\[U(9, 11.25) = 9 \times 11.25 = 101.25 \]

Götsür vergisi ile hâlder daha iyi durumda.