Synthesis of Ni(II) porphyrazine peripherally octa-substituted with the 4-tert-butylbenzylthio moiety and electronic properties of the Al/Ni(II)Pz/p-Si Schottky barrier diode

Bahadir Keskin a, Cenk Denktaş b, Ahmet Altındal b,⇑, Ulvi Avcıata a, Ahmet Gül c,*

a Department of Chemistry, Yıldız Technical University, TR34210 Istanbul, Turkey
b Department of Physics, Yıldız Technical University, TR34210 Istanbul, Turkey
c Department of Chemistry, Technical University of Istanbul, TR34465 Istanbul, Turkey

A R T I C L E I N F O

Article history:
Received 1 February 2012
Accepted 19 February 2012
Available online 17 March 2012

Keywords:
Porphyrazine
Schottky barrier diode
Nickel
Thin films
Barrier height
Ideality factor

A B S T R A C T

Magnesium porphyrazinate substituted with eight 4-tert-butylphenylthio-groups on the peripheral positions has been synthesized by cycloetramerization of 1,2-bis(4-tert-butylphenylthio)maleonitrile in the presence of magnesium butanolate. The metal-free derivative was obtained by its treatment with trifluoroacetic acid, and further reaction of this product with nickel(II) acetate led to the metal porphyrazinate (M = Ni). These new compounds have been characterized by elemental analysis, together with FT-IR, 1H NMR and UV–Vis spectral data. The electronic properties of a spin coated film of NiPz have been studied by fabricating metal–insulator–semiconductor (MIS) capacitors. Current–voltage (I–V) and capacitance–voltage (C–V) measurements were carried out. It was observed that the Al/NiPz/p-Si structure exhibits rectifying behavior with a barrier height value of 0.89 eV and with an ideality factor value of 1.81. It was seen that this value of the obtained barrier height is remarkably higher than those given for metal/Si semiconductor contacts in the literature. The Lien, So and Nicolet method, combined with conventional forward I–V, was used to extract the series resistance value and it was found to be 26 kΩ. High frequency C–V measurements were used to determine the mobile oxide charge in the NiPz layer and this was found to be 1.6 × 1011 cm–2.

1. Introduction

Porphyrazine macrocycles afford a skillful platform to build up detailed molecular superstructures and this property, coupled with a full and well-improved synthetic chemistry, has surpassed the synthesis of different catalytically essential metallo porphyrazines and original model compounds of various functions [1–3]. In contrast to the structural similarity between phthalocyanines and porphyrazines, the latter have been relatively less studied compared with the phthalocyanines [4–6]. The diffuse nature of porphyrazines π electronic structure would help us understand there are long-range interactions between different parts of the molecule. The presence of soft S donor atoms play an important role in affecting the solid-state interactions, and an extensive series of derivatives with physical and chemical properties comparable to those of phthalocyanines have been reported [7–9]. Derivatization of porphyrazines has generally been accomplished by the addition of various substituents to the peripheral positions. These substituents enhance the solubility of the products (e.g., tert-butyl) and provide additional functionalities for interaction with alkali or transition metal ions, mesophase formation, etc. [10–12]. Nickel porphyrazine (NiPz), compared with other metal-centered tetrapyroles, e.g., metal phthalocyanines (Pc), offers new ways to induce, modify and to control molecular properties and has a high metal/ligand stability [4,13,14].

Schottky barrier diodes (SBDs) play a crucial role in modern semiconductor technology as the basis of a large number of electronic devices such as field-effect transistors (FETs), solar cells and photodetectors [15,16]. Recently there has been extensive investigation of organic materials for their use in SB diodes to improve the fundamental SB diode parameters such as the Schottky barrier height Φ_B and the ideality factor n. A SB diode with the desired electronic properties can be obtained by means of the choice of a suitable interlayer. With that regard, phthalocyanines, porphyrins and porphyrazines have been considered to be one of the most stable organic semiconductors for various electronic and opto-electronic applications. Considerable attention has been given in recent years to the fabrication and characterization of SB diodes using some phthalocyanine compounds [17]. Although porphyrazines are of interest because of their potential applications, such as molecular electronics [18], sensors [19–21], organic solar cells...
[22], photodynamic therapy [23] and organic field effect transistors [24,25], unlike some phthalocyanine compounds, the electronic and interface properties of porphyrizines have not been widely studied. Furthermore, although there are a lot of works on heterojunctions with phthalocyanines and some other organic compounds, as yet there are no reports on porphyrizine plus a p-Si type junction.

The purpose of the present work is to synthesize nickel(II) inserted peripherally tert-butylbenzylthio substituted porphyrizine (NiPz) and to investigate the electronic properties of the Al/NiPz/p-Si SB diode by the insertion of the NiPz organic layer between the Si semiconductor and Al metal.

2. Experimental

2.1. Reagents, instruments and measurements

[Octakis(4-tert-butylbenzylthio)porphyrizinato]Mg(II) (1) (MgPz) and [2,3,7,8,12,13,17,18-octakis(4-tert-butylbenzylthio)21H,22H porphyrizine] (2) (H2Pz) were prepared according to the previously reported procedures and characterized by comparing their spectral data to those reported earlier [26]. The Mg(II) complex and the metal free porphyrizine (H2Pz) were stable at room temperature, non-hygroscopic, insoluble in water, but soluble many common organic solvents. Reagents: Chemicals employed were of the highest grade available. Unless specified otherwise, reagent grade reactants and solvents were used as received from the chemical suppliers.

The FT-IR spectra were recorded in the 4000–400 cm⁻¹ range on a Perkin Elmer Spectrum One spectrometer using KBr pellets. The electronic spectra and absorbance measurements were recorded on an Agile 8453 UV–Vis spectroscopy system. Proton NMR spectra were recorded on Brucker 250 MHz and 500 MHz Varian Inova spectrometers. Elemental analyses were recorded on Thermo Flashhe 1112 series equipment.

2.2. Synthesis of (2,3,7,8,12,13,17,18-octakis[4-tert-butylbenzylthio]porphyrizinato)Ni(II) (3)

To a solution of anhydrous Ni(CH3COO)2 (173 mg, 0.094 mmol) in 10 ml of absolute ethanol was added a solution of 2 (80 mg, 0.046 mmol) in 10 ml of THF. The resulting mixture was refluxed for 20 min in ambient nitrogen. The film of the Pz compound was prepared by the spin coating method. The ellipsometric technique was used to measure the thickness of the NiPz film and it was found to be 110 nm. After the film deposition process, the substrate was immediately placed in a vacuum system for the processes. Al metal contacts were formed on a NiPz layer by vacuum thermal evaporation of Al at pressure of approximately 3.0 × 10⁻⁶ mbar using an Edwards Auto 500 thermal evaporator system. The current–voltage (I–V) measurements were performed using a KEITHLEY 6517A electrometer and data of current–voltage measurements were recorded on a PC using a GPIB data transfer card. The capacitance–voltage (C–V) measurements on the prepared Schottky diodes were also carried out using an Agilent 4284A LCR meter. All the measurements were performed under 10⁻³ mbar.

3. Results and discussions

3.1. Synthesis and characterization

The starting point of this new nickel(II) porphyrizine structure with eight (4-tert-butylbenzylthio) groups bound to the periphery is 1,2-bis-(4-tert-butylbenzylthio)maleonitrile (TBBTMMnt), which was synthesized as a solid product in relatively high yield according to a previous report (Scheme 1) [26]. The presence of electron donating S-groups is expected to shift the absorption range of the porphyrizine Q-band to higher wavelength and the tert-butyl groups are expected to enhance the solubility [4,13,14,27].

The cyclotetramerization process of the dinitrile derivative (TBBLMMnt) by the template effect of magnesium butanolate in butanol resulted in the blue-green octakis(4-tert-butyl-benzylthio)porphyrizinato magnesium 1 in very good yield (Fig. 1). The metal-free derivative 2 was obtained in a reasonable yield of 30–40% by treatment of 1 with trifluoroacetic acid at room temperature for 8 h. The change of color from dark blue-green to purplish blue and the lowering of the solubility are apparent differences between the magnesium and metal-free products. Insertion of metal ions into 2 with nickel(II) acetate was performed in THF and ethanol at reflux temperature for 18 h and afforded derivative 3 in approximately quantitative yield (84%). The elemental analysis results closely follow the values calculated for 3.

Spectroscopic investigations on the newly synthesized intermediates and porphyrizines are in accordance with the proposed structures. In the FT-IR spectrum of TBBTMMnt, the stretching vibration of C=N is observed at 2213 cm⁻¹, the tert-butyl peak around 2978 cm⁻¹, the S–CH₂ peak around 680 cm⁻¹ and the aromatic C–H peaks around 3028 cm⁻¹. These values comply with those reported in the literature for similar compounds and with the previous report for TBBLMMnt [26,28]. The sharp C=N vibration around 2213 cm⁻¹ disappeared after the formation of porphyrizine 1. The N–H stretching vibration of the inner core of the metal-free porphyrizine 2 was observed around 3289 cm⁻¹ after demetallation of 1 [25,29,30]. The FT-IR spectrum of the NiPz (3) derivative showed a stretching vibration of the tert-butyl peak around 3083–2956 cm⁻¹ and aromatic C–H peaks around 3028 cm⁻¹, which are very similar with the literature (M = Cu, Co, Zn) as expected [4,26].

In the ¹H NMR spectra of 1, 2 and 3, chemical shifts corresponding to the tert-butyl protons came out at the expected values: a singlet at 1.3 ppm in the ligand TBBTMMnt, 1.14 ppm in 1, 1.17 ppm in 2 and 1.33 ppm in 3 [5,26,29,31,32].

To identify the structure of the porphyrizines (1–3), electronic spectra are especially useful. The electronic absorption spectra of the metallo-porphyrizines (1 and 3) exhibit a strong absorption between 648 and 674 nm which is due to a π→π* transition and
is commonly referred to as the Q-band, by which the first intense bands of the porphyrazine core are dominated. A second intense and broad transition in the near UV region in the range 327–380 nm, called the soret or B-band, is also a characteristic of these tetrapyrole derivatives [4,5,26]. The UV–Vis spectra of the porphyrazines (1, 2, and 3 as 4 × 10⁻³ M solutions in dichloromethane) prepared in the present work exhibited an intense single Q-band absorption for the π → π' transition around 648–674 nm and B-bands in the UV region around 326–346 nm (Fig. 2). The change of symmetry of the porphyrazine core from D₄h in the case of the metallo-species to D₂h in the metal-free derivative 2 is apparent, showing a split Q-band at 647 and 714 nm, as expected, for 2 (Table 1) [26,28–30]. The UV–Vis spectra were measured at different levels of concentration to assess whether or not compound 3 reveals any aggregation properties. In light of the results obtained, it was observed that the compound did not show any appreciable aggregation in the concentration range 10⁻³–10⁻⁶ M.

3.2. Electronic properties of Al/NiPz/p-Si

Current–voltage (I–V) and capacitance–voltage (C–V) measurements are two fundamental characterization technique for SB diodes. The forward bias I–V characteristic of the Al/Pz/p-Si structure at room temperature is given in Fig. 3. Although the reverse bias current exhibits a weak voltage dependence, the forward current of the diode increases exponentially with the applied voltage, which is the characteristic behavior of rectifying contacts. This plot also indicates that there is a deviation from linearity in the forward bias ln I versus V graph for sufficiently large applied voltages. The observed I–V characteristics indicate that the Al/Pz/p-Si structure exhibits a rectifying behavior with a rectification ratio, which is the ratio of the forward current to the reverse current at a certain applied voltage, of 3.1 × 10⁴ at ±1 V. In this case, it is reasonable to represent the dependence of the current I on the applied voltage V,
according to thermionic emission of the SB diode model with a series resistance, by the well-known expression [33]:

$$I = I_0 \left(\frac{q(V - IR_s)}{nkT} \right) - 1$$ \hspace{1cm} (1)

where

$$I_0 = A A^* T^2 \exp \left(- \frac{q\phi_b}{kT} \right)$$ \hspace{1cm} (2)

and I_0 is the saturation current, R_s is the series resistance of the diode, V is the applied voltage, q is the electronic charge, k is the Boltzmann constant, T is the absolute temperature in K, A is the area of the diode, A^* is the effective Richardson constant for p-type Si ($A^* = 32 \text{ cm}^{-2} \text{ K}^{-2}$) [34], n is the ideality factor and ϕ_b is the effective Schottky barrier height at zero bias. Solving Eq. (2) for ϕ_b yields:

$$\phi_b = \frac{kT}{q} \ln \left(\frac{AA^* T^2}{I_0} \right)$$ \hspace{1cm} (3)

In most cases, it is not easy to decide which type of carrier transport mechanisms is responsible for the observed conduction mechanism. However, the value of the ideality factor n can help in determining the possible conduction mechanism. For an ideal Schottky barrier diode $n = 1$, but in a real SB diode, the ideality factor has a value greater than unity for several reasons, such as image force lowering of the Schottky barrier at the interface, the presence of an interfacial thin native oxide layer and series resistance [33,35]. The ideality factor n is given by

$$n = \frac{q}{kT} \frac{dV}{d \ln I}$$ \hspace{1cm} (4)

With the aid of Eqs. (3) and (4), the barrier height and ideality factor n of the diode were calculated from the intercept and slope of the linear region of the forward bias ln I–V characteristic, and they were found to be 1.81 and 0.89 eV, respectively.

To obtain the significance of this value of ϕ_b, we compared our findings with conventional MS contacts such as Al/p-Si and Au/n-Si diodes. The current–voltage characteristics of p-Si/C junctions fabricated by pulsed laser deposition at different temperatures were investigated by Gupta et al. [36]. The values of various junction parameters, such as ideality factor, barrier height and series resistance, were determined from the forward bias I–V characteristics. The values of the barrier height were found to be 0.37 and 0.41 eV for junctions fabricated at room temperature and 200°C, respectively. More recently, the current–voltage characteristics of Au/n-Si Schottky barrier diodes over the wide temperature range 70–310 K were investigated by Sharma [37]. Sharma observed a decreasing trend in barrier height (from 0.79 eV at 310 K to 0.27 V at 70 K) with the decrease in operating temperature. The ϕ_b value of 0.89 eV that we have obtained for the Al/NiPz/p-Si device is remarkably higher than that achieved with conventional MS contacts such as Al/p-Si and Au/n-Si diodes. The obtained results reveal that the Pz organic film controls the carrier transport of the diode at the contact interface and the conventional Al/p-Si diode can be designed to exhibit the desired properties by means of the choice of the organic molecule.

The obtained high value of the ideality factor and the deviation from the linearity in the forward bias current–voltage plot at sufficiently large voltages suggest the presence of an organic interlayer and series resistance. Several methods have been proposed to obtain series resistance in a Schottky barrier diode. The Lien, So and Nicolet method [38] was employed for an accurate evaluation of the series resistance (R_s) from the standard ln I–V plot. This method is based on an auxiliary function defined by

$$F(V, I) = \frac{V}{I} \frac{kT}{q} \ln \left(\frac{I}{AA^* T^2} \right)$$ \hspace{1cm} (5)

where z is an arbitrary parameter greater than the ideality factor n. According to this method, plots of $F(V, I)$ versus current show a minimum for $I_s = \frac{V}{z} (z - n)$. The plot of I_s versus z is a straight line whose slope leads to the value of the series resistance R_s. The plot of $F(V, I)$ versus I for various values of z ranging from 2 to 3.2 is shown in Fig. 4.

Once the minimum point and corresponding value of the current (I_s) on each $F(V, I)$ versus I plot was determined, we then plotted the I_s versus z graph using the obtained I_s value. Fig. 5 shows the I_s–z plot of the Al/Pz/p-Si SB diode. From the slope of the I_s–z plot, the value of the series resistance has been determined as 26 kΩ. The high series resistance behavior may be ascribed to the decrease in the increasing rate in current due to space charge injection into the Pz organic thin film. The observed high value of the series resistance indicates that the series resistance is a current-limiting factor for the studied SB diode.

Many types of oxide charges, such as fixed oxide charge, oxide trapped charge, mobile oxide charge and interface trapped charge, can influence the capacitance–voltage (C–V) characteristics of the SB diode. Therefore, the determination of the oxide charges, especially mobile oxide charges (Q_{ox}), is important for information about the quality of the MIS type SB diodes. Here, high frequency C–V measurements were used to determine the mobile oxide charges. Fig. 6 shows the forward and reverse bias C–V characteristic of the Al/NiPz/p-Si structure measured at signal frequency of 2 MHz at room temperature. As can be seen from the C–V curve in Fig. 6, the capacitance towards high negative voltage increases and reaches the capacitance of the NiPz layer alone. The number of mobile oxide charges was determined by using the following relation,

$$Q_{ox} = \frac{C_{ox} \Delta V_{fb}}{qA}$$ \hspace{1cm} (6)

where C_{ox} is the oxide capacitance, ΔV_{fb} is the flat band voltage shifts, q is the electronic charge and A is the area of the capacitor. In an ideal metal–insulator–semiconductor (MIS) capacitor (with no oxide charge), flat band capacitance occurs at zero applied voltage. However, most real oxides contain charges which give rise to injection into the Pz organic thin film. The observed high value of the series resistance indicates that the series resistance is a current-limiting factor for the studied SB diode.

Fig. 4. Semi-logarithmic plot of $F(V, I)$ vs. I for different values of z.
In conclusion, we have described the synthesis and spectral characterization of a new Ni(II) porphyrizine surrounded by eight tert-butlyphenyl groups on the periphery. A distinctive property of these compounds is that they have good solubility in many common solvents. The presence of the bulky tert-butyl groups hinders aggregation at relatively higher concentrations (e.g., 10^{-3} M).

The Al/NiPz/p-Si structure has been fabricated and it is shown that this structure exhibits rectifying behavior with a rectification ratio of 3.1×10^4 at ± 1 V. The main SB diode parameters, such as the ideality factor, series resistance and barrier height, were obtained from the measured $I-V$ data. It was observed that these values are remarkably higher than those given for metal/Si semiconductor contacts in the literature, that is, it has been shown that the NiPz interlayer produces an increase in the barrier height. The oxide charge calculations on this MIS capacitors showed that the combination of Al/NiPz/p-Si is a promising structure with low oxide charges suitable for MIS based devices.

Acknowledgment

This research was carried out with the support of the Yildiz Technical University, Project No.: 23-01-02-01.

References

